

TNO – Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek

- on: TNO connects people and knowledge to create innovations that boost the sustainable competitiveness of industry and well-being of society
- Established: 1930 by law People: 4000+
- Turnover: 500M Euro public
 100M Euro in TNO startup
 Business model (10%, 40%, 50%)
 Own research (IP at TNO)
- nt Programs (IP as in

TE

Our areas of innovation EALTHY THROUGHOUT HEALTHY LIVING INDUSTRIAL INNOVATION DEFENCE, SECURITY AND SAFETY 8 GLOBALLY DEPLOYABLE ARMED FO 9 SAFE AND SECURE SOCIETY ENERGY 10 ENERGY SOURCES IN TRANSITION 11 ENERGY EFFICIENCY MOBILITY 5 12 RELIABLE TRANSPORT SYSTEM 13 SAFE AND CLEAN TRANSPORTATION 4 A LIVELY URBAN EN INFORMATION SOCIETY 7 MENT RE USE OF THE INTERNET TNO Strategic Plan 2011 - 2014

Where do we create & consumer value in the Netherlands

Cornelis Corneliszoon van Uitgeest 1593 basis patent sawing mill, 6 dec 1597 the improved crankshaft n cack ne N "besonder creckwerk" 5 3 saws at 120° 30-01-2011 Egber -Jan.Sol@T

Cornelis Corneliszoon van Uitgeest inventor (1593) enabling Holland's Golden Age (1600-1750)

From Golden Age to Stagnation & Crisis of 1850

 1500 1580-1670 1670-1750 1750-1850 1777 1793-1810 1813-1848 	Rotterdam 500 people and Erasmus Upswing of the Dutch Golden Age Height of Golden Age Stagnation Nederlandse Maatschappij voor Nijverheid en Handel (Economische tak van Hollandsche Maat. Wetenschap.) Franse overheersing Willem I (1815-1830 Belgie, canals, railway 1839)	
• 1760-1860	Rotterdam became isolated harbor • West via Hellevoetsluis & Kanaal door Voorne • East via Hollands Diep, Dordrecht, Oude Maas Vlaardingen, Nieuwe Maas to Rotterdam	
 1858 1863-1872 Egbert-Jan.Sol@TNO.nl 	Idea of Caland to re-establish (concentrated) river flow Nieuwe Waterweg through dunes at Hook of Holland 30-01-2011	

Rotterdam, yesterday and today

• 1500 Rotterdam 500 people and Erasmus

12

- 1600 The Dutch Golden Age (Windmills 2 man in weeks 30 to 1)
- 1850 Isolated harbor - with Caland's idea and steam Nieuwe Waterweg • 1900
 - Transito area start of mass-transportation 6000 ton grain transito took 126 men 882 workdays Grain elevators took 14 men 56 workdays (16 to 1)
 Time period of "easy oil" and expansion Europoort
- 1950 • 2000 Largest container harbor in a globalizing world
- But 5 out of 6 habor labor jobs disappeared (6 to 1)

Today: facing less growth in Europe, growth explosion in BRICKs, scarcity in rare materials, fossil energy and climate risks

· But also a very efficient and competitive complex of very large systems serving the energy supply and materials of hundreds of millions of customers it's a 50 x 5 km area for 100-250 M customers Egbe

Grote leugens, kleine leugens en computer grafieken (5 jaar, 10 jaar, 20 jaar (bouw) en 40 jaar (Kondratieff)

Long term waves in economy: Kondratieff

(0-wave: Dutch + 0 Industrial Revolution (Wood/Wind, 1600-1750) ejs) 1-wave: French + 1st Industrial Revolution (Iron/Steam 1785-1845) 2-wave: Marx + Steel Industry (Steel/Railroad 1845-1900) 3-wave: Capitalism + Electricity (Chemistry/Car Engine 1892-1948) 01/(402)

4-wave: Consumption + Oil (1948-1990)

The "Elements of Hope"

	Ma		с:												
K	Ca	Fe	31				- eiei	nen	IS O	гпо	pe				
Ti B	Cr F	Mn Ar	Cu Br			Ę	-crit	ical ed for	elen most	nent	: S al apj	olicati	ons)		
frugal elements (use only when unique properties are					ш	Be	Sc	v	Co	Ni	Zn	Ga	1		
					Ge	As	Sr	Y	Zr	Nb	Мо	PGM			
JSe	only v	a Ca	nnor							-					
use eed	led, e.	g. Co	pper		lang		Ag	Cd	In	Sn	Sb	Те	Ва	REM	
use ieed	led, e.	g. Co	pper		lang		Ag Ta	Cd W	In Re	Sn Au	Sb Hg	Te Tl	Ba Pb	REM Bi	

Metals 2030 : demand versus production

Earth Climate: Moderate or Monster

Earth 4.5 Billion years old Sun heat increases by 40% over 10 Billion years, we are half way

- First Billion years, more CO2, creating a warm blanket when sun was still cold
- Ice ages 2.2B ago, then 1B year warm period, then the super ice age
- 300M y again huge period of ice ages with low CO2 (New St

PAST CO;

- Last 2M years ups & downs, last 1M years 4 period around CO2 220-280
- Sea level can be -120 m below and 75 m above today's level
 Antarctica and Greenland 15% of world area (Wikipedia) and 1500 m land ice, if melted 65 m sea level rise

20	Egbert-Jan.Sol@TNO.nl	30-01-2011	THE

What will happen by 2015-2020

- · BRICKs economy will grow rapidly, increase in demand for energy and materials, not for 1B, but for 5B consumers
- Energy prices and minerals grow more the rapidly, because of minimal price elasticity: with huge demand, price explosion
- Then every country want to lower it dependency on fossil fuels, but installing sustainable solutions is too expensive.
- Need for more sustainable solutions is to be expensive, huge demand for indium for 1000+ km2 solar cells or neodymium for high power magnets for 10.000+direct drive windmills
- And then models for land-ice melting in Antarctica gets accurate and CO2 reduction is desperately pursued to avoid wakening a climate monster.

30-01-2011

· This is a prefect storm scenario

Egbert-Jan.Sol@TNO.nl

Egbert-Jan.Sol@TNO.nl

State-of-the-art for printing food

sugar structure made with (crude) Rapid Manufacturing (Printing)

Electrical Power production - Challenges: capacity

Contouren van de visie

Rotterdam, another 50 years

- 1500 Rotterdam 500 people and Erasmus
- 1600 The Dutch Golden Age
- 1850 Isolated harbor • 1900
- Nieuwe Waterweg and start of mass-transportation Time period of "easy oil" and expansion Europoort • 1950
- 2000 Largest seacontainer harbor in a globalizing world
- Still a very efficient and competitive complex of very large systems using the economy of scale in processing large volumes
- Why invest in a Betuwe line to lower the transaction costs for the Chinese to sell theirs goods in Germany
- 2050 The leading sustainable Chemergy/Chenergy Delta of the world T 42 Egbert-Jan.Sol@TNO.nl 30-01-2011

Large Installations of 1+ BEuro & 40 years lifetime

- Mix into refinery becomes more complicated
 - · More sour oil, mixture of biomass · Old designers and skilled operators grow old (retirement)
 - Inter dependencies grow future

(Not discussed, but also needed)

- New technologies as process intensification
- · Larger mix in output request

Super Systems:

- Safety requirements become more complex
- (In overregulation fire department becomes over powerful)
- Maintenance only possible with simultaneous shutdowns · We need a new paradigm of super systems with a plant captain
- (gezagvoerder) with all the (digital) tools to control (monitor & plan) production, safety & maintenance in one hand This requires a generations of (digital) plant CAD-alike models

High-Tech (equipment) Systems

Architecture for High-Tech (equipment) Systems

High Tech Industry clusters in Europe

T

8

Components & Modules for High-Tech Systems

Manufacturing technologies for HTS

- Assembly
- Joining (welding)
- MetrologyCleaning
- Molding
- Removing (milling, etc)
- Additive

Note: At TNO we made a choice – stop research on anything above 1 millimeter focus only at additive processes at micro/nano/atomic level

from open innovation to open governance

B=Business/Companies K=Knowledge/Uni's & Labs G=Government Sub-optimal – too less, no help

State monopoly – too rigid, over-regulated

Balanced Triple Helix e.g. accelerating co-operation to acquire public/EU funds

The challenge is the tricky balance, not too much or too less with three parties (with two it will not work!!)

30-01-2011

TT.

57 Egbert-Jan.Sol@TNO.

в () к

G

The grand challenges & value creation energy and material savings/healthcare and aging society/low hydrocarbon eco./ sustainable mobility/sustainable consumption & productions/and JOBS, JOBS, Avoid losing factories by improving them: factory with a (digital) future And create new factories for new products: factories of the future Factories with a future - the high-performance, digital factory Down-town production: onsite configuration, customized sustainable consumption, sustainable mobility in mega cities, minimal transport Green factory: low to zero emission, close loops (C2C) n, energy & material s Next Gen IT for production: RFID, Robotics, Aging society Factories for the future urce lacking, knowledge rich Europe nd res ne pr Key Enabling Technologies: photonics, nanoelectronics, nanotechnologies biotechnologies, advanced materials Creating macro value by adding material at nano-micro scal micon fabs (chips), Photonics fabs (SSL (O)LED, Solar PV), Pharma,

Factory of the future = Factories with & for the future

I want my factories back

- Prof Westkamper: 13 april 2010 Valencia
- "Lost factories never come back"
- Why factories back?

- Not a smoking chimney as on the road sign, but
- $\ensuremath{\cdot}$ A factory is where a society concentrated its value creation
- Social & political attention is on consumption, i.e. cost creators
- But how much attention is spent on value creation
- No factories, no value creation, no welfare
 "and lost factories never come back"

1 P

Learning curve for smart devices (from mainframe to ambient push-pin computer)

From Micro-Electronics to Nano-Electronics

And from NanoElectronics to NanoPhotonics

PRINTED ORGANIC LIGHTING (OLED)

Signage devices:

Safety and Healthcare: Stair Lighting

T

United Kingdom: 250.000 accidents/ year, stair fall every 2.5 minute 100 fatal, 100.000 injuries 73

lerdag 9 december 🛛 🙀

do

Efficient flexible solar cells:

Light weight, building integrated: >10⁵ km²/year required mber 😥 derdag 9 dece 76

ORGANIC PHOTOVOLTAICS

- Program by ECN and TNO in frame of Holst Centre
- Focus on Roll-to-Roll technologies for Organic PhotoVoltaics Transfer ideas and concepts between R2R OLED and R2R OPV

WATS - SIF integration

· Many smart autonomous sensor devices in various shapes, networked together...

Low power electronics: The Challenge

Note: nG=1G+..nG

Mobility - vehicle generations for the 21st century

